The objective of ambient intelligence is to create an intelligent daily space, which is immediately usable and integrated into our homes, our offices, our roads, our cars, and everywhere. This new concept must be invisible; it must blend in with our normal environment and must be present when we need it.
One of the application of this concept consists of providing our cars and roads with capabilities to make road more secure (information about the traffic, accidents, dangers, possible detours, weather, etc.) and to make our time on road more enjoyable (Internet access, network games, helping two peoples follow each other on the road, chat, etc). These applications are typical example of what we call an Intelligent Transport System (ITS) which goal is to improve security, efficiency and enjoyment in road transport through the use of new technologies for information and communication.
Traditional traffic management systems are based on centralized infrastructures where cameras and sensors implemented along the road collect information on density and traffic state and transmit this data to a central unit to process it and make appropriate decisions. This type of system is very costly in terms of deployment is characterized by a long reaction time for processing and information transfer in a context where information transmission delays is vital and is extremely important in this type of system. In addition, these devices on roads requires periodic and expensive maintenance. Consequently, for large scale deployment of this type of system, important investment is required in communication and system infrastructure. However, with the rapid development of wireless communication technologies, location and sensors, a new decentralized architecture based on vehicle to vehicle communications has created a very real interest in these last few years for car manufacturers, R&D community and telecom operators. This type of architecture relies on a distributed and autonomous system and is made up of the vehicles themselves without the support of fixed infrastructure for data routing.
The main objectives of an intelligent transportation system includes:
One of the application of this concept consists of providing our cars and roads with capabilities to make road more secure (information about the traffic, accidents, dangers, possible detours, weather, etc.) and to make our time on road more enjoyable (Internet access, network games, helping two peoples follow each other on the road, chat, etc). These applications are typical example of what we call an Intelligent Transport System (ITS) which goal is to improve security, efficiency and enjoyment in road transport through the use of new technologies for information and communication.
Traditional traffic management systems are based on centralized infrastructures where cameras and sensors implemented along the road collect information on density and traffic state and transmit this data to a central unit to process it and make appropriate decisions. This type of system is very costly in terms of deployment is characterized by a long reaction time for processing and information transfer in a context where information transmission delays is vital and is extremely important in this type of system. In addition, these devices on roads requires periodic and expensive maintenance. Consequently, for large scale deployment of this type of system, important investment is required in communication and system infrastructure. However, with the rapid development of wireless communication technologies, location and sensors, a new decentralized architecture based on vehicle to vehicle communications has created a very real interest in these last few years for car manufacturers, R&D community and telecom operators. This type of architecture relies on a distributed and autonomous system and is made up of the vehicles themselves without the support of fixed infrastructure for data routing.
The main objectives of an intelligent transportation system includes:
- the improvement of trip security
- the improvement of global efficiency of the transportation system by reducing travel time and congestion
- the integration of transportation in a durable development policy particularly by reducing gas emissions for light vehicles and heavy trucks and by optimizing maintenance of the infrastructure
- the improvement of user comfort by providing him with a selection of information, decision support, guidance and internet access services.
No comments:
Post a Comment